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CHAPTER 1 - INTRODUCTION

1.0 Problem Formulation

- Adaptive methods of beamforming that yield high resolution

beam outputs require a much greater numerical intensity than

conventional Fourier techniques of beamforming. Reduction of the

adaptive dimension of these data dependent beamformers can

alleviate the numerical intensity problem with a negligible loss in

performance.

The adaptive dimension reduction may be accomplished by a

matrix premultiplication of the array sensor data. The matrix

premultiplication, known as matrix preprocessing, transforms the N

dimension array data vector into an M dimensional space where M <

N. The M dimensional data is then beamformed with a minimum

variance distortionless response (MVDR) adaptive beamformer.

Another method of reducing the adaptive dimension is by the

approximation of the covariance or cross spectral density matrix

(CSDM) by its dominant or strongest eigenvectors. This technique,

developed by Owsley in [1] and [10], is known as the enhanced

minimum variance beamformer (EMVDR). *

The intent of this thesis is to present and compare the matrix

preprocessor configuration and the enhanced minimum variance
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reduced dimension adaptive beamformers. The subarray and beam

space matrix preprocessors will be covered. The comparison will be

against a full array MVDR beamformer and a conventional

beamformer.

A general introduction to the concept, application and

implementation of beamforming is covered in Chapter 2.

Conventional and adaptive methods of beamforming are discussed

and the reduced dimension adaptive beamformer is proposed.

The models and assumptions used in the development of the

beamformers are presented in Section 3.1. Conventional

beamforming, the beamformer beampattern and beam response are

covered in Section 3.2. The matrix preprocessed MVDR algorithm

development, subarray and beam space preprocessors and a

discussion of wavenumber analysis are covered in Section 3.3. The

enhanced minimum variance beamformer is developed in Section

3.4.

The comparisons will first be in the form of a metric introduced

by Owsley in [4] and [10] called the Array Gain Improvement (AGI)

in Section 4.1, then beampatterns in Section 4.2, followed by beam

responses in Section 4.3 and numerical intensity in Section 4.4.
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The significant contributions of this thesis include the

exploration of the subarray matrix preprocessor and the stochastic

evaluation of the beamformers.

1.1 Current Technology

Adaptive algorithms have origins dating to the 1960's. The

numerical intensity required of the implementation has always been

a hurdle that required surmounting. Alternatively the use of sub-

optimal techniques has been proposed in [11]. With the onslaught of

VLSI technology, realization of broadband full array adaptive

beamformers has become a reality. For a fixed amount of processing

power a trade-off exists between the size of the array, the number of

beams and the number of frequencies the beamformer operates on.

The MVDR algorithm was first developed with a soft

distortionless response constraint by Owsley [17] in 1969 and with a

hard constraint as shown by Frost [18] in 1972.

The reduced dimension adaptive beamformers to be discussed

have been proposed by various people. The subarray preprocessor

was alluded to by Owsley in [2], the beam space preprocessor by

Gray in [3] and the enhanced minimum variance beamformer was

developed by Owsley in [1] and [10]. Several others have worked

with the reduced adaptive dimension idea as comprehensively

shown in [12] by Van Veen.
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The implementation of the subject beamformers requires two

specialized algorithms. The first is used to realize the covariance

matrix inversion for the MVDR beamformer via the Cholesky square

root factor and is found in [2j and [5]. The second is an eigenvector

and eigenvalue estimator used to compute the eigen-decomposition

of the covariance matrix for the EMVDR beamformer and is

developed by Yang and Kaveh in [7]. The Cholesky square root factor

CSDM exponential update and inverse and the eigenvector algorithm

by Yang and Kaveh are respectively shown in Appendices A and B.



CHAPTER 2 - BEAMFORMING BACKGROUND

2.0 Introduction

The intent of this section is to introduce the reader to the

concept of beamforming, its uses, implementations and structures.

The properties of conventional and adaptive beamforming are

discussed and the concept of reduced dimension adaptive

beamforming is proposed.

2.1 Array Signal Processing

Array signal processing consists of the processing methods

used to analyze the signals received from an array or group of

transducers. The signals arriving at the array are traveling waves of

differing frequencies and arrival angles. Applications of array signal

processing may be found in seismology, radar, sonar, and other fields

as seen in [11. Examples of sensor arrays include sensors measuring

seismic activity in the earth, radar antennae and underwater

transducers sensing pressure waves. The signals received by the

sensors are used to estimate parameters associated with the sources

causing the traveling waves. The parameters may include

frequencies, amplitudes, relative phase delays, angles of arrival,

source location, etc. Beamforming is an array signal processing

technique that aids in the estimation of these parameters and in the

detection of the traveling waves.

5
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2.2 Beamforming

Beamforming combines the data from the array sensors into a

single "beam" output. Several beams are computed so that they

"look" in directions that span the possible arrival angles of an

impinging traveling wave. The directional aspect of beamforming is

accomplished by the attenuation and phasing or delay of signals

coming from different directions. This process may be related to a

bandpass finite impulse response (FIR) filter operating on time series

data. The transfer function of the filter is similar to the

beamformer's beampattern where different directions are attenuated

instead of frequencies. The beampattern is discussed more

thoroughly in Section 3.2. A beamformer is thus also known as a

spatial filter. The relations between spectral estimation and

beamforming will be exploited when possible to assist the reader in

relating the text to a familiar topic.

Other characteristics of beamforming include the increase in

signal to noise ratio (SNR) at the output of a beam as compared to the

SNR at a single sensor. The ratio of the beam output SNR to the

sensor level SNR is known as the array gain [8]. As in frequency

estimation the angle of arrival or spatial frequency of a traveling

wave may be found by forming several beams and estimating the

spatial spectrum.
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2.3 Time and Frequency Domain Beamformers

Beamforming may be accomplished in either the time domain

where the sensor outputs are delayed, scaled and summed or in the

frequency domain where the delay operation translates, via a Fourier

transform, into a phase shift. The phase shift of the frequency

domain beamformer is accomplished by the multiplication of a

frequency dependent complex exponential.

The time domain beamformer operates on all frequencies and

is thus wideband. A frequency domain beamformer first converts

each sensor output time signal into the frequency domain by a Fast

Fourier Transform (FFT). The sensor outputs at discrete frequencies

bins are then scaled, phase shifted and summed to form a single

frequency beam output. The beamforming is thus performed over a

frequency band as wide as an FFT bin. If several frequency bins are

beamformed and converted back into the time domain by an inverse

FFT (IFFT), then time domain beam outputs are available. Figure 2.1

describes the frequency domain beamformer which will be the

implementation discussed in this paper.

2.4 Sensor Array Geometry

Without a loss of generality we will restrict the configuration of

the sensor arrays used as examples to be a set of equally spaced

sensors placed in a straight line. This may be directly related to the

uniform time sampling performed on a voltage or current waveform.

In this case the waveform being sampled is the signal field impinging
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on the sensor array. The sources generating the traveling waves are

assumed to be point sources and the propagation of the waves

istaken to be spherical. Figure 2.2 depicts a line array of sensors

with a point source emitting a wave impinging on the array. The

perpendicular direction to the line array is known as "broadside".

From broadside traveling waves may arrive at the array in angles

ranging from -90 to +90 degrees.

Source

Array

1 2 ... N sensors

Figure 2.2 Line array with point source at angle theta.

2.5 Conventional Beamforming

Conventional beamforming (CBF) is beamforming with the use

of fixed amplitude scalings and phase shifts. This provides a

constant beampattern that depends on the scalings used and the total

length or aperture of the array. This is the most widely accepted

type of beamforming. The spectral estimation analog of CBF is the

discrete fourier transform (DFT) or periodogram method with

amplitude shading of the data. Marple calls this the Welch
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periodogram in [9]. Figure 2.3 shows a typical beam pattern plot.

The pointing direction of the beam, commonly called the main

response axis (MRA) or the angle the beam is steered to, is the angle

at which an incoming signal receives no degradation.

dB

-90 MRA +90
Angle of arrival (degrees)

Figure 2.3 Conventional beamformer beampattern.

2.6 Adaptive Beamforming

As in spectral estimation there are several techniques of

beamforming that are dependent on the data. These algorithms are

known as adaptive beamforming (ABF). Typically the ABF

techniques are characterized by high resolution beams and often an

optimality criterion. Adaptive beamformers find their origin in the

1960's with the work of people such as Applebaum, Byrn, Griffiths,

et al.

The adaptive technique used in this paper is in conjunction

with the Minimum Variance Distortionless Response (MVDR)

beamformer. This is an optimal technique that minimizes the noise
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variance at the output of a beam while constraining the response of

the beamformer to a source impinging on the beam's MRA to be

distortionless, i.e. to have a frequency response at the MRA with

constant magnitude and zero phase. It will be shown that the

minimum beam output noise variance condition also satisfies the

maximum array gain, maximum beam output SNR and minimum

beam output power conditions.

Adaptive beamforming provides an increase in the resolution

of a beam over a conventional beamformer under certain conditions.

The increased resolution assists in the estimation of the direction of

arrival of a signal impinging on the array of sensors.

In order to implement the optimal beamforming algorithm

some information about the traveling waves impinging on the array

is necessary. The covariance matrix contains that information and if

it is not known a priori it must be estimated. The data dependent

characteristic of adaptive beamforming is in the estimation of the N-

by-N (for an array of N sensors) covariance matrix. The covariance

matrix is covered in detail in Section 3.1. In reference [2] Owsley

states that the variance of the exponentially averaged covariance

matrix estimator is inversely proportional to S-N+1 where S is the

number of independent updates made to the estimate and N is the

number of sensors (it is assumed that S is greater than N).
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The MVDR ABF algorithm requires the inverse of the

covariance matrix post multiplied by a known vectbr." As seen in [2]

this requires on the order of N2 numerical operations utilizing a

Cholesky square root factorization of the covariance matrix. A

numerical operation is considered to be a complex multiply and add.

Comparatively a CBF only requires N numerical operations to

compute a single beam output.

The costs of using ABF thus include a noise variance on each

beam output due to the uncertainty of the estimated covariance

matrix and the increased number of numerical operations required.

2.7 Reduced Dimension Adaptive Beamforming

There have been several studies [1, 2, 3, 4 and 12] concerning

methods of reducing the dimension of the adaptive process in ABF,

resulting in a reduction in the numerical intensity and possibly the

estimation noise variance. Three of the more promising algorithms

have been chosen to be discussed here: The subarray preprocessor

introduced by Owsley in [2], the beam space preprocessor presented

by Gray in [3], and finally the enhanced minimum variance

beamformer developed by Owsley in [1] and [10].

The subarray and beam space methods are both characterized

by a matrix preprocessor operating on the array sensor data

reducing the data vector size and the adaptive dimension from N to

M as shown in [4]. An adaptive MVDR beamforming process is
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performed on the M dimensional output of the matrix preprocessor.

A reduction in the number of numerical operations is achieved

because of the reduced dimension of the adaptive process.

The enhanced minimum variance beamformer (EMVDR) uses

an estimate of the covariance matrix based on its dominant modes to

compute the beamformer weights and delays. Only the D dominant

eigenvectors must be estimated as compared to the full covariance

matrix where D is expected to be much less than N the full

dimension. The computational savings is also evident in the

eigenvector estimation algorithm.

The purpose of this thesis is to develop the theory behind the

above three reduced dimension adaptive beamforming techniques

and compare them to conventional beamforming and to a full array

adaptive MVDR beamformer.



CHAPTER 3 - THEORY

3.0 Introduction

This section is intended to describe the models and

assumptions used in the development of the beamformers including

the introduction of the "steering vector" and the covariance matrix.

Conventional beamforming is discussed along with a beamformer's

beampattern and beam response. The MVDR algorithm with a matrix

preprocessor is developed followed by an in depth discussion of the

subarray preprocessor. The beam space preprocessor is presented

and finally the enhanced minimum variance beamformer is derived.

The variable notation used throughout the text has the

following explanation: scalars are generally lower case non-bold

characters, vectors are lower case bold, matrices are upper case

bold, and Fourier transforms may be either upper or lower case of

the time domain signal depending on the situation.

3.1 Models and Assumptions

As mentioned in Section 2.4 and described in Figure 2.2 the

example used to develop the beamformers will be an array of

sensors configured in a straight line with equal spac'ig between each

sensor. The sensor is a transducer that converts a physical force into

a voltage signal. The voltage signal is then sampled in time. The

resulting discrete voltage signal is converted into the frequency

domain by the use of an FFT. Figure 3.1 depicts this process. A

14
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vector is formed by taking the same frequency bin (FFT output) from

each sensor signal. This is known as the frequency data vector. For

wideband processing this must be done for several frequency bins.

Time Fast Fourier

Sensor domain Transform

array sampling x (k'f)

~~x1(tk), X1(tk+0) ...

,JX2(k,

;" x2(tk), x2,(t k+l) ..

Traveling waves 0 Frequency
impinging on 0 domain data

array 0

N~~ F7xN(k,f)

XN(tk), XN(t k+ , )-...

Impulse train

for sampling

Figure 3.1 Pre-beamformer signal path.

Figure 2.2 illustrates a point source producing waves

propagating spherically. It is assumed that all point sources are in

the far field. The far field or plane wave assumption is that the

length of the array of sensors is small compared to the distance

between the source and the array. If this is so the wavefront, as it

arrives at the array, is very near to being planar. Figure 3.2 depicts

a plane wave impinging on a line array from the angle theta. The
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resulting time delay between the first and the ith sensor is seen to

be,

dsin(O)(i - 1) 3-1
C

where c is the speed of of the traveling wave and d the distance

between adjacent sensors.

dsin( 0) Wavefront
'= = '" -- W avefron

Adjacentd
sensors

Figure 3.2 Delay between adjacent sensors.

Grouping all of the sensor outputs due to the signal into a

vector and incorporating the delays, 'Ti, yields,

a(t) = [a(t-ci) a(t-T2)--, a(t-CN)IT,

where a(t) is the amplitude of the received waveform at the first or

reference sensor and the superscript "T" denotes the transpose

operation. Computing the Fourier transform of the time domain data

vector yields,
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4cc

a(f)= Ja(t) e-J2x f t dt
-00

a(f) = A(f) [ e-j2x,,fi e-j2'xf*2 ... e-j2xfrN]T

a(f) = A(f) d(f,o) 3-2

where A(f) is the Fourier transform of a(t). It is assumed that A(f)

has zero mean, E[A(f)]=O, and variance E[A(f)A*(f)] = S, where S is

frequency dependent.

The vector d(f,O) is dependent on the frequency and the angle

of arrival of the plane wave, the array sensor spacing and the speed

of the traveling wave. This vector is known as the steering vector

and will be seen to play an important role in beamforming. The

steering vector is developed here for the simple line array case.

More complex array configurations only require that the relative

delay between a reference sensor and every other sensor be

calculable or measurable.

In reality the sensors receive noise as well as signals from the

ambient background and electronic noise from amplifiers and other

hardware. This noise is modelled as being uncorrelated from sensor

to sensor and additive to the received voltage signal, i.e.

x(f) = a(f) + n(f) 3-3
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where n (f) is the Fourier transform of the received noise. The

frequency noise vector is characterized by having a complex zero

mean (E[n(f)]=n(f)=O) and a covariance matrix defined by:

Q = E[(n - n)(n - n)H] = E[nnH] = G2 IN

where the superscript "H" denotes a complex conjugate transpose

operation and IN is an N-by-N identity matrix. For ease of notation

the dependence on frequency will be suppressed for some variables.

The covariance matrix mentioned in Chapters 1 and 2 is the

expected value of the outer product of the frequency data vector

with itself,

R =E[x xH]

= E[(a + n)(a + n)H]

= E[aaH + anH + naH + nnH]

Since a and n are assumed statistically independent, the expected

value of their outer product is zero yielding,

= E[aaH + nnH]

= E[A(f)A*(f) ddHI + ;2 IN

= E[A(f)A*(f)] ddH + 0 2 IN

= S ddH + 0 2 IN. 3-4
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Now let there be an arbitrary number of independent or

uncorrelated plane wave sources impinging on the array from

directions 01, 02 , ... p with the associated steering vectors d(0 1),

d(02), ... d(0p) and source powers (variances) S1, S2, "' Sp. Due to

linearity and superposition, the terms resulting from the plane wave

sources add to form a covariance matrix of the following form:

R = E[x xH]

= S 1 d1 d1H + S2 d2d2H +..- + Sp dpdpH + (;2 IN

= [di d 2 ... dp] S [dI d2 ... dp]H + 02 IN

=DSDH +G2 IN 3-5

where D = [dI d2 ... dp], and S = diag[Si S2 ... SpI.

The covariance matrix, described by the expected value of the

outer product of the frequency data vector with itself, is also known

as the cross spectral density matrix (CSDM) for a particular

frequency.

3.2 Conventional Beamforming

Conventional beamforming is performed with fixed amplitude

scalings and phase shifts that correspond to fixed look directions.

The spectrum analysis analog is the bandpass FIR filter. The weights

applied to the sensors are similar to the impulse response or

coefficients of the FIR filter. The beam output is the sum of the



20

products of the complex sensors weights and the sensor data, i.e. the

discrete convolution of the two.

The spectral analysis technique known as the Welch

periodogram [9] is performed using the DFT which is simply a bank

of FIR bandpass filters. Thus it is seen that the FIR spatial filter (the

CBF) applied to the sensor array data is simply estimating the spatial

frequency spectrum (at a single spatial frequency) via a Welch

periodogram technique. It is convenient to think of a CBF as a spatial

bandpass FIR filter. In general several beams are computed to form

an estimate of the full spatial spectrum. The spectrum analysis

analog is a bank of FIR filters estimating several frequencies

(probably implemented as an FFT).

In spectral estimation the resolution achieved by digital

Fourier techniques such as periodograms is inversely proportional to

the amount of time data that is processed. A similar limit is imposed

in conventional beamforming where the amount of data processed is

defined by the aperture or extent of the array. The adaptive

algorithms, as in spectral estimation, are not restricted by this limit.

The beampattern and beam response of a beamformer are

commonly misunderstood. The beampattern is similar to the

transfer function of an FIR filter. It is defined as being the expected

response of a beamformer steered to a specific direction (i.e. a fixed

set of beamforming weights) due to a single unit variance, zero mean,
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plane wave source being swept across all potential angles of arrival

[5]. The transfer function of an FIR filter may be measured similarly

by sweeping a sine wave across all possible frequencies. The

information the beampattern yields is the attenuation that a plane

wave signal may expect to receive dependent on its angle of arrival

when the beamformer is steered to a fixed angle. As previously

mentioned the beampattern provides the "impulse" response or

transfer function of the beamformer that yields the output or beam

response.

The frequency domain beamformer is represented by the inner

product of a beamforming vector of complex weights, w(8s), with the

received frequency data vector,

y(es) = W(Os)Hx(f) .

The output of the beamformer steered to the angle Os is y(Os). Note

that y is a complex scalar value. The magnitude squared, or

instantaneous power, of the beam output is often used as a

comparison metric or for display purposes.

Mathematically the beampattern is developed from a fixed set

of weights, w(Os), where Os is the angle the beamformer is steered to.

The weights may come from any type of beamformer. The expected

value of the magnitude squared of the beamformer output is the

beampattern,
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b(Os,O) = E[Iw(es)Hx(f,)I 2]  3-6

where x(fO) represents the frequency domain data vector due to a

unit variance, zero mean, plane wave emanating from the angle 0.

As seen in Section 3.1 the frequeacy domain data vector due to a

plane wave source is modeled as a random complex scalar multiplied

by a steering vector for the array steered to the direction of the

source,

x(f,e) = A(f)d(0),

where the complex multiplier, A(f), has zero mean, E[A(f)] = 0, and

unit variance E[IA(f)12] = 1. Now simplifying the beampattern,

b(0s,O) = E[w(0s)Hx(f,O)x(f,e)Hw(eS)]

= E[A(f)A*(f)w(0s)Hd(O)d(0)HW(0s)]

- E[A(f)A*(f)] W(0s)Hd(0)d(0)HW(Os)

= E[IA(f)121 IW(Os)Hd(0)12

= lw(0s)Hd(9)2 3.-7

The direction of the unit variance, zero mean, plane wave

source, 0, is swept through all possible arrival angles (-90 to +90

degrees). The resulting plot of b(0s,0) against the source arrival

angle, 0, is the beampattern of the beamformer steered to the angle

eS.
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A conventional beamformer delays, scales and sums the sensor

outputs. The delays are determined by the direction the

beamformer is steered to and as seen in Section 3.1 are a function of

the array spacing, speed of the traveling wave and steering angle

(for the line array example). The shadings utilized are similar to

those used in digital filter design. The uniform and Chebyshev (with

30dB sidelobes) shadings will be utilized here. Figures 3.3 and 3.4

depict the beampattern of a uniformly and Chebyshev shaded

conventional beamformer steered to an angle of 30 degrees.

N= 1"
Uniform shading
MRA= 30 degres

t! -30- "i

-80 -60 -40 -20 0 20 40 60 80

Angle of arrival (degres)

Figure 3.3 Uniform CBF beampattern steered to 30 degrees.

The characteristics of the Chebyshev shading, the constant

sidelobe level, lower than that of uniform sensor shading at the

expense of mainlobe width, are seen in Figure 3.4.
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The beamnforming vector for a conventional beamformer,

steered to the angle Os, as represented by the delays and shadings is

w(Os) = W d(05 )

where W is a diagonal matrix containing the shadings and d(05 ) is an

array steering -vector steered to the angle 0 s. The beampattern for a

conventional beamformer is thus seen to be

bCBF(Os,O)) = Id(85S)HWd(O))12  3-8

where W is real and diagonal.

- N= 11
Chebyshav shading

-10 with 30 dB sidelobes
MRA - 30 degrees

- 0 60 -4 .2 .04 0s

Angle of arrival (degrees)

Figure 3.4 Chebyshev CBF beampattemn with 30 dB sidelobes

steered to 30 degrees.
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The beam response of a beamformer is the output power of a

fan of beams spanning the potential arrival angles. The spectrum

analysis analog is the estimate of the power in several frequency

bins. The beam response is computed by forming several beams and

taking the magnitude squared of the output. The average or

expected response includes the expectation operator as follows,

r() = E[IW(O)HxI2]

= E[W(0)HxxHw(e)]

= w(0)H E[xxH] w(e)

=w(O)H R w(O) 3-9

where x is the received frequency data vector, R is the CSDM defined

in Section 3.1, w(0) is the beamforming vector, and 0 is the angle to

which each beam is steered to and varies from -90 to +90 degrees.

The average beam response provides the response of the

beamformer to a particular scenario for the perfectly known CSDM.

In practice the CSDM is never known exactly and scenarios are not

stationary for long periods of time. The CSDM is therefore estimated

using an exponential averager (see [2], [5] and Appendix A). The

beam response for each iteration is calculated as the power output of

the beamformer,

r(O) = Iw(0)Hx12. 3-10
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Figures 3.5 and 3.6 show average beam responses for a

conventional beamformer with uniform and Chebyshev (with 30 dB

sidelobes) shading. The scenario is a plane wave source at zero

degrees with 0dB variance and at 30 degrees with -3dB variance

amidst spatially uncorrelated background noise with a variance of

0dB at a sensor. There are eleven sensors in the array.

Nall

-2 Uniform shading

........ ...; ! .. .. .

-12
-80 -60 -40 .20 0 20 40 60 80

Angle of arrival (degrees)

Figure 3.5 CBF beam response with uniform shading.

The average beam response for a conventional beamformer is

seen to be,

rCBF(O) = d(O)HW RW d(O), 3-11

by substituting in for the conventional beamforming vector.
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N= 11

.2 Chebyshev shadingI
with 30dB sidelobes

-6-i

-12
.0 -60 -40 -20 0 20 40 60 80

Angle of arrival (degrees)

Figure 3.6 CBF beam response with 30 dB Chebyshev shading.

3.3 Matrix Preprocessed MVDR

The subarray and beam space preprocessors may be described

in the form of a matrix premultiplier operating on the received

frequency data vector. The implementation of this configuration is

depicted in Figure 3.7 where the beamformer is separated into a

preprocessor and an ABF section. Note that the full array MVDR

algorithm is a special case where the matrix preprocessor is an N-by-

N identity matrix.

The objective of the matrix preprocessor is to reduce the

dimension of the adaptive part of the beamformer from N (the

number of sensors) to M. The effect of the reduction lies in the fact

that the CSDM that needs to be estimated and inverted is now only
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M-by-M thus reducing the total number of numerical operations

required to implement the beamformer. Sections 3.3.1 and 3.3.2

cover two particular methods of choosing the matrix used in the

preprocessor. As shown in [4] by Owsley and Abraham several types

of reduced dimension adaptive beamformers may be implemented in

the matrix preprocessor structure.

Ps AdaptivePreprocessor Linear Combiner

y(k,f) = A x(k,f) r(k,f)= w(k,f,O) ytk,f)

x(k,f) M-by-N y(k) w(k,fO) r(k,fO)
Frequency Ba

7 Beam
data vector Adaptive output

Controller

Figure 3.7 Matrix preprocessor - ABF configuration.

The minimum variance distortionless response beamformer

may be equivalently derived for the constrained minimization of the

variance of a beam output, the maximization of a metric known as

the array gain, the maximization of the beam output SNR or the

minimization of the total beam output power. Beginning with the

maximization of the array gain, the equivalency will be shown. First

the frequency data vector is acted on by the preprocessor iatrix

yielding a reduced dimension data vector,
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y(Ops) = AH(eps) X 3-12

(Mx 1) (MxN) (Nxl)

where 0ps is the presteering angle and A(Ops) is the preprocessing

matrix. Several presteering angles are required to evaluate all the

possible arrival angles. The presteering angles are specific to the

type of preprocessor matrix used and will be discussed further in

Sections 3.3.1 and 3.3.2.

The adaptive beamforming will be performed on the reduced

dimension data vector y(Ops), thus the beam output power or

response of a beam steered to angle 0 is,

r(0) = E[Iw(e)Hy(0ps)12].

Note that the beam is pointed to the angle 0 and the preprocessor

matrix is set to the presteer angle 0ps. For convenience most of the

indices denoting these angles will be omitted.

r(0) = E[wHyyHw]

= wi E[yyH] w

= WH E[AHX xHA] w

= WHAH E[x xHI A w

= WHAH R Aw
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In Section 3.1 the CSDM was modeled as the sum of several plane

waves and spatially uncorrelated noise,

R = S1 dld1 H + S2 d 2 d2 H + ... + SpdpdpH + a2 IN.

Let the plane wave denoted by angle 01 be from the angle that the

beamformer is steered to, 0 (i.e. 0 = 01). Now an important distinction

between signal and interference is made. Any signals impinging on

the array from a direction other than the look direction or MRA of

the beamformer are considered to be interferences. The

uncorrelated background noise is also considered to be interference.

Thus the CSDM may be broken up into signal and noise partitions as

follows,

P = dldlH = ddH

SN Q = S2 d2 d2 H + ... + Sp dpdpH + C;2 IN

where P is the signal partition, Q is the noise partition and SN is the

equivalent variance at a single sensor due to all of the interfering

signals. Now the CSDM may be written as,

R = SIP + SNQ. 3-13

Substituting this back into the beam response power equation yields

r(O) = wHAH (SIP + SNQ) Aw
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= SlwHAHPAw + SNwHAHQAw 3-14

It is desired to maximize the array gain (AG). The array gain is

defined by Burdic in [8] as the ratio of the SNR at the output of the

beamformer to the SNR at a single sensor.

AG= 3-15
SNRIN

The SNR at a single sensor is simply

Si
SNRIN =S . 3-16

The SNR of the beam response output is seen to be the ratio of the

signal and noise partitions of the above equation for the beam

response output power.

SlwHAHPAw 3-17
SNRouT=SNWHAHQAw

The array gain is then

WHAHPAw
AG wHAHQAw 3-18

The constraint applied to the beamformer keeps a source

coming from the angle that the beam is pointed to distortionless.

This means that the signal must receive no phase change and only a
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specified amount of gain. Here the gain is chosen as N, the number of

sensors. This is to insure that the ABF array gain matches the CBF

array gain. The constraint is written as,

WHAHd = N. 3-19

The steering vector d and the beamforming vector w are pointed to

the direction of the beam, and in this case that of the first plane

wave source. A cost function, J1 , is generated that includes a

Lagrange multiplier, X, operating on the constraint,

wHAHpA w
J1 =wHAHQAw + 2X(wHAHd - N). 3-20

The beamforming vector, w, that maximizes the cost function also

maximizes the array gain while preserving the distortionless

response constraint. In general the minimization or maximization of

the cost function iequires that the partial derivative be taken with

respect to the beamforming vector, w, and its complex conjugate, w*,

and then setting both equal to the zero vector. When the cost

function is real it is sufficient to set either partial derivative to the

zero vector. The cost function is real here because the function being

extremized is real and the constraint is forced to be real. The

multiplication of the constraint by 2 doesn't alter the extremization

of the cost function for if the constraint is satisfied (wHAHd - N) will

equal zero and the factor 2 provides a simpler algebraic equation

than would otherwise have occurred.
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The maximization of the beam output SNR condition is easily

seen to be the previous equation for the array gain multiplied by the

constant sensor level SNR yielding a cost function,

wHAHpAw
J2 = SNRIN wHAHQAw + 2X(wHAHd N). 3-21

The minimization of the beam output noise variance may be

seen by substituting the constraint into the expanded numerator of

the equation for the array gain,

wHAHddHA w
= wHAHQAw + 2X(WHAHd - N)

N2

wHAHQAw+ 2 (wHAHd -N). 3-22

The minimization of the beam output noise power or variance is

equivalent to the maximization of its inverse. The denominator of

the above cost function is the power output of the beam due to the

noise or interference portion of the signals impinging on the array.

The minimization of the total beam output power may be seen

by rewriting the cost function J3 as a minimization rather than an

maximization,

J4 = WHAHQAw + 2X(wHAHd - N).
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Now substituting in for the noise partition, Q, and the constraint on

the beamforming vector, w,

J4 = wHAHRAw - wHAHddHAw + 2X(wHAHd - N)

= wHAHRAw - N 2 + 2X(wHAHd - N). 3-23

The constants in J2 , J3 and J4 due to the application of the

constraint or the sensor level SNR do not alter the resulting optimal

beamforming vector, w. Note that all cost functions constrain the

response of a signal from the direction the beam is pointed in to be

distortionless with a gain of N. The functions to be extremized are

listed in Table 3.1 for comparison.

Table 3.1 Functions to be extremized as related
to various optimal conditions.

Description Function Extremum

Array gain WHAHPAw Maximize
WHAHQAw

Beam output -NR wHAHPAw MaximizeSNRRWHAHQAw

Beam output wHAHQAw Minimize

Noise power

Beam output WHAHRAw - N 2  Minimize

power

The optimal beamforming vector is most easily found by

solving the constrained minimization of the total beam output power

in the cost function J4 . The partial derivative of the cost function

with respect to the beamforming vector is,
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aw

Now setting this equal to zero and solving for the beamforming

vector, w,

a 4 0
-w J4

w = -X(AHRA)-IAHd 3-24

This equation for w is substituted into the constraint equation which

is then solved for the Lagrange multiplier X,

WHAHd = N

A~ dHA(AHRA)-IAHd = N

X= -N
XdHA(AHRA)-IAHd

Note that (AHRA)-1 is complex conjugate symmetric. Substituting

this back into the equation for w thus yields,

w N (AHRA)-IAHd
W=dHA(AHRA)-IAHd

N Rp-IAHd 32
dHARPIJAHd 32

Rp =AHRA

=AHE[XXHlA
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= E[yyH]

where y = A Hx is the reduced dimension frequency data vector and

R p is the reduced dimension CSDM defined as the expected value of

the outer product of the reduced dimension data vector with itself.

The reduced dimension CSDM, Rp, may be estimated from the

reduced dimension frequency data vector, y. There exist several

methods of estimating the CSDM of a frequency data vector [5]. The

method used in Section 4.3 for the stochastic analysis of the

beamformers is an exponential average of a rank one update of the

CSDM [21 & [5]. In particular the Cholesky square root factor of the

CSDM is what is updated. This method is covered in detail in [51 and

in Appendix A.

The development of the MVDR beamformer is covered in detail

in [1] and [5]. The matrix preprocessor development is a simple

extension that came from work done for [4].

3.3.1 Subarray Preprocessing

Subarray preprocessing consists of forming several smaller

overlapping arrays out of all of the sensors of the full array. The

smaller arrays, known as subarrays, are then beamformed using

conventional techniques to form several beam outputs. A beam

output from each subarray (steered to the same direction) is

adaptively combined according to the previous section's development
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of the matrix preprocessed MVDR beamformer. The concept of

forming subarrays prior to adaptive beamforming is alluded to by

Owsley in [2]. Figure 3.8 shows how an array may be partitioned

into subarrays, each with a beam pointed to a certain direction.

Subarrays

-AV

/ Subarray bem

Figure 3.8 Full array partitioned into subarrays.

The preprocessing matrix is comprised of conventional

beamforming vectors placed such that they pick off the sensors in

each subarray and combine them to form the beam outputs. A

typical subarray preprocessor matrix will have the form,

W(Op) 0 0
A(Op) W(Op) ... 3-260 0 W(0p)-
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where w(Op) is a conventional beamforming vector that is the length

of a subarray, Op is the direction that the subarray beams are steered

to, and 0 is a variable dimension vector of zeros.

A particular concern in this method of preprocessing lies in the

choice of the subarray size, shading and spacing of the. phase centers.

The energy field the sensors are immersed in is sampled in discrete

locations. This sampling process is similar to the sampling of a time

waveform where aliasing is avoided by sampling above the Nyquist

sample rate. In time waveforms the signal is filtered prior to the

sampling to insure that any energy at frequencies that would alias

during the sampling is attenuated as much as possible. Spatial

sampling does not have this luxury and hence aliasing may not be

avoided.

Throughout the paper the spatial analog of temporal frequency,

spatial frequency, has been alluded to as an indication of the angle of

arrival of a traveling wave impinging on an array. In order to

adequately discuss the aliasing concerns of the subarray parameters

more depth in the spatial frequency domain is required. Section

3.3.1.1 covers the required information.

3.3.1.1 Wavenumber Analysis

The spacing of the sensors in an array is chosen such that the

highest "spatial frequency", known as wavenumber, that is desired to

be evaluated is not aliased at the highest temporal frequency of
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concern. The spatial analog to time and period is distance and

wavelength,

C

A.= C 3-27

where c is the speed of the propagating wave and f is the frequency

of concern. Spatial frequency is measured in wavenumber defined

by,

2xf 2n
k = c sin(%)=ysin(9), 3-28

for wave propagation along a single axis (i.e. a line array). This is

covered by Owsley in [51 for the more general three dimensional

wave propagation as well as the single axis case.

The sampling in space, as in time, causes the spectrum of the

sampled signal to be the original unsampled spectrum repeated at

every multiple of the spatial sampling rate, ks. The sensors in the

array only cover a finite portion of the waves traveling in the

medium. This is modeled as an infinite function windowed to a finite

aperture. The resulting spectrum is thus the convolution of the

transform of the windowing function with the true spectrum. The

sampling, windowing and convolution principles can be found in

Oppenheim and Schafer [14].
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Beamforming the frequency data vector may be viewed as a

method of forming an estimate of the spatial spectrum at a single

frequency and a particular wavenumber. The frequency and the

angle the beam is steered to define the wavenumber. The steering

vector used in conventional beamforming is,

d(f,e) eJ2xft 1 e'J2ft2 ... eJ 2x&N] T

I [1 e-j2zfdsin(O)/ c ... ej2xfdsin(O)(N'I)/ciT

[ej2xfdsin(O)i / c  i =,

- [ejbil

Looking at the exponent only,

bi= 2itfdsin(O)i/c
21tf

c sin(o)di

= kd i 3-29

The sensor spacing of the array is chosen such that it is no

greater than one-half of the wavelength of the highest wavenumber

of concern. This is related to the frequency that the array is

designed for and the speed of the traveling waves in the medium,

Xs c n
2 = 2fs = ks
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Thus substituting this back into the above equation for the exponent

yields,

k .

The wavenumbers to be evaluated that will produce unique spatial

spectrum estimates are seen to lie on [-ks, ks] where,

2n fs 2n
& S s "

This may be shown by evaluating a wavenumber with a greater

magnitude than ks,

k'= k + ks,

where k is less than ks. The exponent bi is then,

k'bi -ksX i

k+k

bi - ks A I

bi= (ks -k) 7c+ 2 7ci

= Ki+27 i.ks

Substituting this back into the steering vector causes the "27ri" term

to go away because it is equivalent to a multiplicative one. The value
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of wavenumber that is thus evaulated by using k', greater than ks, is

-(ks-k) which is within the range [-ks, ks].

The less than half wavelength spatial sampling may be related
T

to spectral analysis where the time sampling occurs every - seconds

I or less. The unique frequencies are evaluated over [-fs, fs], where fs
2

i. In this case the Nyquist sampling frequency, or the frequency

interval at which the repeated spectra occur is fN = 2fs.

Figure 3.9 shows the wavenumber - frequency spectrum and

the repeated spectra at multiples of the spatial Nyquist sampling

rate, 2ks. Note that for a fixed travelling wave speed, c, all the

spatial energy falls within the shaded region where the boundaries

indicate a wave impinging on the array at +90 or -90 der:ees from

broadside.

The beamforming process estimates the wavenumber spectrum

inside of the shaded region seen in Figure 3.9 at a single frequency.

The angles the beams are steered to correspond to particular

wavenumbers. Wavenumber is related linearly to frequency as seen

in the equation relating the two for a fixed angle of arrival.

3.3.1.2 Subarrays

The conventional beamforming of the subarrays may be

thought of as applying a wavenumber bandpass finite impulse
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response (FIR) filter to the wavenumber spectrum. The output

spectrum is bandlimited in wavenumber and may be spatially

undersampled. The undersampling is performed by spacing the

Ks

-Ks

r -Ks-

-2Ks

Fmax

Frequency (Hz)

Figure 3.9 Wavenumber spectrum.

phase centers of the subarrays several sensors apart. This is

equivalent to convolving the full array frequency domain data vector

with the subarray conventional beamforming vector (the impulse

response of the FIR filter) and then undersampling the convolved

output. The transfer function or beampattern of a subarray is shown

on the wavenumber plot at the design frequency of the array in

Figure 3.10.

The true spectrum of the energy impinging on the array is thus

passed through the filter defined by the subarray conventional
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beamforming vector. The filter applies an amplitude and linear

phase change to the spectrum. Several wavenumbers centered about

the presteer direction (the MRA of the subarray beam) are

evaluated. If a signal has a wavenumber that is not on the MRA of

the subarray beam it will be attenuated slightly. The wavenumber

2Ks

Ks

Subarray

. beampattern

Fmax

Frequency (Hz)

Figure 3.10 Beampattern applied to wavenumber spectrum.

that are evaluated are in the mainlobe of the subarray beampattern

and receive a limited amount of attenuation. It is desired to avoid

altering the signals impinging on the array significantly. This

requires that several adjacent bands of wavenumber be filtered (i.e.

several subarray beams or presteer directions) and processed such

that the total wavenumber spectrum of concern is evaluated with an
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acceptable amount of degradation. The attenuation due to the

subarray beamforming is known as scalloping loss.

The undersampling of the spatial spectrum causes the aliasing

previously mentioned. The repeated spectra of the wavenumber

spectrum is shifted down into the original spectra. This occurs

because the new spatial sampling frequency is less than the old one

due to the greater separation of the data samples (phase center of

the subarrays). Figure 3.11 shows how the subarray beampattern of

the repeated spectra is aliased down into the primary spectra on the

wavenumber plot. Figure 3.12 shows two adjacent spectra

beampatterns and their exact overlap. Note that this occurs for all

adjacent pairs of the repeated spectra.

Aliasing
spectrum

S Ks
(D

0
.. .....~ ~ ~... . .. ...= ..==========

Fmax

Frequency (Hz)

Figure 3.11 Beampattern aliasing with spectrum.
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The dimension of the adaptive beamforming performed on the

subarray beam outputs is desired to be small as stated in the first

two chapters in order to reduce the numerical intensity of the

algorithm estimating the inverse of the CSDM. This is in turn

reflected into a desire for as few subarrays as possible that will span

the full array aperture. This calls for large spacings between

subarrays which translates into a very small spatial sampling

frequency. This in turn means that it is desired to have the repeated

spectra aliased down as far as possible into each adjacent spectra.

Aliasing

Subarray spectrum
'eampatterns ,m

-Ks 0 Ks

Wavenumber

Figure 3.12 Beampattern aliasing.

The high aliasing is not desired because it corrupts the

estimate of the wavenumber spectrum, the beam output. The

compromise between the two conflicting desires was suggested by

Dr. Norman Owsley of the Naval Underwater Systems Center (NUSC)

to be to allow the aliased spectrum to enter an adjactnt one such that
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the two mainlobes overlap at the level of the first sidelobe. This

condition may be seen in Figure 3.12.

The question arises as to how to determine what subarray

sizes, spacings and shadings meet the above aliasing criteria. Due to

the discrete sensor location sampling of the spatial field it is required

that there be an integer number of sensors between the phase

centers of adjacent subarrays. In order that all available data be

used it is also required that the subarrays utilize the full aperture of

the array, i.e. that the first and last sensors are included respectively

in the first and last subarrays.

Figure 3.13 depicts the integer number of sensor spacing of the

subarray phase centers and the utilization of the full aperture

resulting in the following equation,

N-Ns 330M-Na +,33

where M is the number of subarrays, Ns is the number of sensors per

subarray, and Na is the number of sensors between the phase centers

of two adjacent subarrays. Note that M, N, Ns, and Na must be

integers. The number of sensors in the full array, N, is given. For a

particular window function used to shade the subarrays the spacing

of the subarrays, Na, for a particula' subarray size, Ns, must be tested

to see if it is an integer. If it is then the number of subarrays

required to span the entire aperture of the array, M, is tested to see
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if it is an integer. The resulting valid combinations will satisfy the

constraints and conditions previously described.

MI Ns]

311 Nsi M subarrays

l l Nsl
III1 Nsl

1 2 3 N sensors in

Na Sensors the fun

between subarray 
way

phase centers

Figure 3.13 Subarray spacing example.

Looking at the exponent of the conventional beamforming

vector used to estimate the wavenumber spectrum, as done in

Section 3.3.1.1, but evaluating it at the spatial frequency ks with half

wavelength sensor spacing (d = ).s/2) yields,

bi(ks) =ks L- ii=0,.,-

=ks NaXsi

Na 2
'u.

= ku - i

where the new spatial sampling period is seen to be Xu = NaXs/2 and

the corresponding sampling wavenumber rate is ku = ks/Na. As seen

in Figure 3.12 the new sampling rate, ku, is exactly two times the

point at which the two beampatterns overlap in the mainlobe.
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The test for the validity of a particular subarray size and

shading will be the condition that the ratio of the original

wavenumber sample rate to the new sample rate is an integer,

Na =k INTEGER. 3-31-ku-

The ratio may be determined by computing the beampattern

and finding the wavenumber in the mainlobe that is at the same

level as that of the first sidelobe. From this the new wavenumber

sampling rate may be determined and the subarray spacing

determined.

The beampattern must also be evaluated to find the

wavenumber that is at the limit of the allowable scalloping loss.

Once this is determined the number of required subarray beams and

their particular presteering directions may be determined. Figure

3.14 shows the mainlobe of the subarray beampattern and the region

that will be evaluated where the scalloping loss is acceptable, [-ksl,

ksl.

The corresponding wavenumber that will be evaluated on each

subarray beam will be less than the band shown such that there are

an integer number of beams that span the full wavenumber space as

shown in Figure 3.15.

The constraint is seen to be in the form of,
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Figure 3.14 Scalloping loss limit on mainlobe of beampattern.

Ke Ls =-

Ke

1 2 0 0 0 LsH-H- I I i I
-Ks/2 Ks/2

Wavenumber

Figure 3.15 Spacing of subarray beams in wavenumber.

The band of wavenumber (ke wide) that is evaluated for each

subarray beam steering direction does not have to terminate as

shown in Figure 3.14 where the scalloping loss reaches the maximum

allowable. It is desired to have the same width of wavenumber

evaluated for all the subarray beam presteer directions and to have

the directions be equally spaced in wavenumber.
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The algorithm described in Appendix C was used to determine

the valid subarray sizes for the beampattern and beam response

evaluations of Chapter 4.

Subarray preprocessing is similar to a vernier frequency

estimator discussed by Nuttall in [15]. For the subarray beamformer

the second or vernier stage of processing is an adaptive spatial

spectrum estimator instead of a conventional Fourier method.

3.3.2 Beam Space Preprocessing

Beam space preprocessing was first introduced by Gray in [3].

It is also known as adaptive beam interpolation (ABI). The sensor

data is first converted into N (the number of sensors) conventional

beam outputs performed using uniform array shading. The MRA's of

the N conventional beams are equally spaced in wavenumber. This

insures that for half wavelength sensor spacing the interpolation

beams are orthogonal (diHdj = 8ij).

Several adjacent beams are then used to interpolate in high

resolution the area at the center of the fan of beams. The

interpolation is performed with a distortionless response constraint

as was developed in Section 3.3.1. The fan of beams "wraps around"

when the angles of +90 or -90 degrees from broadside are reached.

This is allowed because of the repeated spectra generated in the

spatial sampling process as discussed in Section 3.3.1.1.
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The mathematical development of the beam space algorithm is

covered by Gray in [3]. Reference [4] shows how the beam space

algorithm may be implemented in the form of a matrix preprocessor.

The preprocessor matrix operating on the array sensor data is

formed from the steering vectors that generate the conventional

beams. The dimension of the reduced ABF process is equal to the

number of beams used in the interpolation. The number of presteer

directions is equal to the total number of conventional beams utilized

in the interpolation process which is equal to N, the number of

sensors.

A simpler but more specific implementation of the beam space

preprocessor could take the form of first the computation of the N

conventional beams and storage of the complex beam outputs. The

beam outputs used for the adaptive algorithm from each presteer

direction may then be picked at will. The computational savings of

this implementation over the matrix preprocessing is realized by not

having to recompute conventional beam outputs for new presteer

directions.

This brings to bear a convenient trait of the beam space

preprocessor, being that access to the element level data is not

required. If the output of a conventional beamformer is the only

data available a high resolution beam response estimation may still

be performed.
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3.4 Enhanced Minimum Variance Beamforming

In [1 & 10] Owsley introduces the enhanced minimum variance

beamformer (EMVDR). At low interference to noise ratios the MVDR

adaptive beamformer performs the same as the conventional

beamformer. This can be seen from the array gain comparison

shown in Section 4.1 and [4]. Thus the ABF achieves most of its gain

against the stronger interferers impinging on the array. Owsley

suggests that the CSDM be approximated by the components due to

the stronger, or dominant, signals. This is performed by separating

the frequency data vector information into a dominant signal

subspace and a complementary space containing all other signals.

The dominant signal subspace is then scaled or enhanced.

Mathematically the development of the EMVDR beamformer

comes from the eigenvalue-eigenvector decomposition of the CSDM.

Recall from Section 3.1 the CSDM was represented as,

R=DSDH +0 2 IN. 3-5

The eigen-decomposition may be represented as,

R = MAMH, 3-33

where the columns of M are the orthonormal eigenvectors of R and A

is a diagonal matrix of the eigenvalues. As sfen in Brogan [6] and
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derived from the definition of R, the following are some of the

properties of the eigenvalues and eigenvectors of R,

- The eigenvectors of D S DH are also eigenvectors of R
- If vi are the eigenvalues of D S DH then

Xi = Vi + a2 are the eigenvalues of R
- D S DH is positive semidefinite so that Vi > 0 for all i

- Since R = RH, then MAMH = MAHMK, or A = AH, meaning that

the eigenvalues of R are real
- If a 2 and the source powers in the diagonal matrix S are

greater than zero then the eigenvalues of R are all
positive and greater than zero (R is positive definite)

Taking the D dominant eigenvalues and associated eigenvectors

and separating them as follows,

E = NNH 3-34

where N is an N-by-D matrix whose columns are the D eigenvectors

of D S DH corresponding to the D largest eigenvalues, Wi, and F is a

diagonal matrix of those eigenvalues.

The exact number of sources does not need to be known, only

the dominant or very strong ones. Many high resolution source

subspace beamformers, direction finders or spectrum estimators

require that the exact number of sources be known in order for the

algorithm to work. There has been much work in the area of

estimating the number of sources impinging on an array or the
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number of sinusoids present in a time domain signal. Most of the

work requires that the background noise be spatially uncorrelated.

Angularly extended noise generates eigenvalues that may be

confused with the plane wave source eigenvalues. Thus in the

presence of angularly extended noise the eigenvalue methods of

estimating the numbcr of sources fall apart. The EMVDR algorithm in

contrast only requires the number of strong plane wave sources. It

is expected that this problem will not be as difficult as requiring

knowledge of the exact number of sources.

Once the dominant source subspace, E, is determined an

estimated and enhanced CSDM is formed as,

A
R (e) = eE + 02IN

= eN'FNH + G2IN 3-35

where e is the enhancement factor.

The estimated CSDM is used in an MVDR algorithm operating on

the full array frequency data vector. The beamforming vector

equation is found by setting the preprocessor matrix equal to an N-

by-N identity matrix in the MVDR development of Section 3.3.1

yielding,

NR- t d
W = dHRld.
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A

Replacing R- 1 with the approximated CSDM, R (e)-1 , the beamforming

vector becomes,

A

NR (e)-ldA 3-36

dHR (e)-I d

Note that the inverse of the CSDM is required and may be

found by using the matrix inversion lemma from Brogan [6],

(UAVH + B)-1 = B-I - B-IU(VHB-IU + A-I)-IVHB-1,

as follows,

A

R (e)-1 = (eN'PNH + 0 2IN)- I

-
2 [IN - N(ID + e 2 )-INH]

,U2 [IN - N B(e) NH]

= 2

where B(e) (ID +
e

= diag(p3i)
1

if Pi = 1 I+2 /(ei)

Now post multiplying the inverse CSDM by the steering vector d,

A IR (e) -1 d =2 [IN - N 11(e) NH] d
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- - N B(e) NHd]

1 D

= ;- [d- 7"DininiHd] 3-37
i=1

where N = [n 1n2 ... nD] are the dominant eigenvectors. Placing this

back into the equation for the beamforming vector,

D

N[d - Xl3ininiHd]
i=1

W = D " 3-38

N - Xl3iIdHniI2

i=l

This form of the beamforming vector is very revealing in that

it shows how a conventional beam is formed with the steering vector,

d. Any interferences, defined by the projection of d onto the

dominant eigenvectors n i, are then removed by steering nulls toward

the sources contributing to the information in the dominant

eigenvectors.

A considerable advantage of the EMVDR technique is that it

requires very few numerical operations for implementation. Kaveh

and Yang introduced a very fast algorithm for the estimation of the

eigenvalues and eigenvectors of the source or noise subspaces in [7].

The particular algorithm used is covered in Appendix B.



CHAPTER 4 - COMPARISON

4.0 Introduction

This section will compare the reduced adaptive dimension

beamformers with conventional and full array adaptive

beamformers. The metrics used for comparison are the array gain

improvement (AGI) for a single source, single interference and

uncorrelated background noise case, the beampatterns, beam

responses, and the numerical computation intensities associated with

the realization of the beamformers.

4.1 Array Gain Improvement

For the case of a single plane wave source and a single plane

wave or point interference (PIN) with spatially uncorrelated

background noise the array gain for the adaptive beamformers may

be found analytically. The CSDM for the above case according to the

models discussed in Section 3.1 is,

R = SldldlH + 52d2d2H + 02 IN, 4-1

where Si and S2 are respectively the source and interference powers,

d I and d2 are their associated steering vectors, and a 2 is the

uncorrelated noise power.

58
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The array gain (AG), as described in Section 3.3, is the ratio of

the SNR at the output of the beamformer to the SNR at a single

sensor. The single sensor or beamformer input SNR is seen to be,

SNRIN S1 4-2SNRINS2 + U2 *

The beamformer output power (beam response) from Section

3.2 is,

r(O) = w(O)HRw(O).

Inserting the above definition for the CSDM for the single

source, single interference and uncorrelated background noise case

and dropping the dependence on the angle 0,

r = wH(SjdjdlH + S2 d2d2H + 0 2IN)w

= SiwHdldiHw + S 2 wHd 2 d 2 Hw + o 2 WHINW

= SIwHdldiHw + S2 WHd 2 d2 HW + a 2wHw

= SIwHdlI2 + S2 IwHd 2 2 + a 2wHw

The beamformer output SNR is thus seen to be,

= SuIwHdi12 4-3
S 2 1wHd 2 12 + 0 2wHw

The array gain is then,
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AG= (S 2 + a2)IwHd112
S 2 1wHd 2 12 + a2wHw

(r + N)IwHdi 112

r1wHd 2 12 + NwHw,

where r is defined as the ratio of the interference power to the noise

power at the output of a conventional beamformer,

r S2 45
a 2/N =2 .

The array gain improvement, described by Owsley in [4] & [10],

is defined as the ratio between the array gain for a particular

beamformer and the array gain for a conventional beamformer with

uniform shading. The beamforming filter vector, w, for the

uniformly shaded conventional beamformer is simply the steering

vector d. This beamformer is steered to look at the source of

concern, thus w = d 1 . The array gain is then seen to be,

r+N
AGCBF-- I + rL' 4-6

where the following simplifications were applied,

diHdi = N

djHd2 = Na
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IdlHd 2 12 = N2 aa* - N2L,

a is in general complex and 0 < L : 1.

Note that if there is no interference (S2 = r = 0) the array gain

for the conventional beamformer is equal to N. An alternate form of

the array gain may be found by manipulating the equation into the

form of a constant, N, plus a second term dependent on the

interference to noise ratio r,

r(X - NL)
AGCBF=N+ 1 + rL

This form reveals how the array gain is affected by the interference

to noise ratio, r.

The array gain for each of the adaptive beamformers may be

found by inserting their beamforming vectors into the above generic

AG equation. The AGI is then found by forming the ratio between

the adaptive beamformer array gain and the array gain for a

conventional beamformer,

AGI = AGCB 4-8AGCBF"

An exorbitant amount of algebra is required to place the

equations into forms that are meaningful. Some of the results are
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seen in [4] and encapsulated in Table 4.1. The EMVDR beamformer

AGI was derived allowing for a variable enhancement factor.

The parameters associated with the AGI equations are as follows,

Beam space:
M = Number of interpolation beams
L = Average sidelobe level of interference in M beams

E=ML

Subarrays:
L = Normalized interference level in full array
L__s = Normalized interference level in subarray
L s = Aliased subarray center response

EMVDR:
P = Signal to interference ratio = S1/2

2P

[I - P] + 4 [1 - p] 2 + 4PL
e = Dominant source subspace enhancement factor

r= NS2 = interference to beam output noise powera

u l+ erP(1 +y)

It is desired to compare the four adaptive beamformers

(MVDR, subarrays, beam space, and EMVDR) to a conventional

beamformer using the AGI metric. In order to illustrate the

properties of the equations found in Table 4.1 three separate cases

will be covered. The number of sensors is taken to be N = 32.
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Table 4.1 Array gain improvement (AGI) for full array MVDR and

beam space, subarray, and EMVDR reduced dimension beamformers.

Beamformer Array Gain Improvement
Full Array r2L(I.L)
MVDR l+rE

Beam Space r2L _L)
MVDR I+ l+rE
Subarray
Beam Space et1 + +r(L-1I..)
MVDR l+rL,
Eigenvector [(u-L)+(u-0yL(2y)F(1+rL)
EnhancedM VDR (I +rL)[u(l +,yL)+(n I yL(I") ]2 L(r+ I)(I +y)[(2u " I)(I +2-fL+-f2 L )  "( 1 '. tL ) ]

The first two cases as seen in Figures 4.1 and 4.2 have the

interference in what would be the mainlobe of a conventional beam

steered at the source. This is performed by setting the normalized

Mainlobe PIN

L a -3 dB . MVDR
SIR = -3 dB

SUB

CBF ARRAY GAIN " EAM

0 EMVDR

-------------------------------------------
....... . ... .. .....

10 . .........

109 10' 102

CBF MRA INTERFERENM-TO-NOISE RATIO (dB)

Figure 4.1 Array gain improvement (AGI) for a mainlobe point
interference (PIN) with high signal-to-interference ratio.
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interference level in the full array, L, to the level of the beampattern

at the point where the PIN falls in the mainlobe. For Figures 4.1 and

4.2 the PIN falls at the -3dB point in the beampattern of a

conventional beam steered at the source (L = -3dB). This means that

if a conventional beamformer were steered to the direction that the

source was arriving from, a signal coming from the direction of the

interference would only be attenuated by 3dB. For strong

interferences this is not very much attenuation.

Mainlobe PIN
L a -3 dB MVDR

102 SIR z .30 dB

SUB

CBF ARRAY GAIN
BEAM

104

i....... .......... ........ .. . ...
1 U P ... .. .. .. .. .. ..... ." ........ ...........

HO10' 102

CBP MRA &MMIMENC7-TONOISE RA11O (ME)

Figure 4.2 Array gain improvement (AGI) for a mainlobe point
interference (PIN) with low signal-to-interference ratio.

In Figure 4.1 the signal to interference ratio is only P = -3dB.

This means that the signal power is 3dB below the interference
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power. Figure 4.2 shows the case where the signal power is 30 dB

below the interference power (P = -30dB).

In Figure 4.3 the PIN is placed in the sidelobe of the

conventional beamformer beampattern such that it receives 30dB of

attenuation (L = -30dB). The signal to interference ratio is P = -10dB.

Sidelobe PIN 7
L z -30 dB

SIR = -10 dB 
-x

CBF ARRAY GAIN .

MVDR ' 6

1 + - SUB "

o -BEAM
x -EMVDR a

Ice10) .......... .... 4 ...... * ... ... o ....4,-. . 0.+ U O 4x O ' 4X 
.. "° "  0

102I
100 101 102

WURA JIWERENU.TO-NOISE RATIO (dB)

Figure 4.3 Array gain improvement (AGI) for a sidelobe point
interference (PIN) with intermediate signal-to-interference ratio.

The AGI for the EMVDR beamformer was derived for the single

source, single interference in uncorrelated background noise case.

Only one dominant eigenvector and eigenvalue were used for the

estimate of the CSDM. Figures 4.1 and 4.3 show the EMVDR

beamformer reaching a plateau at high interference to beam output
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noise power, r. The signal to interference ratio is -3 and -10 dB

respectively in the figures. The signal is thus much higher than the

background noise level for high r. Because of the strength of the

signal it should also be assigned an eigenvector. This would improve

the performance of the EMVDR beamformer to make it equivalent to

that of the full array MVDR beamformer. When the signal power is

much less than the interference power, as seen in Figure 4.2, or at

low interference to beam output noise ratios the one eigenvector that

is used to estimate the CSDM contains enough information to provide

identical performance of the EMVDR and the full array MVDR

beamformers.

Important conclusions to draw from these graphs are that the

reduced adaptive dimension beamformers perform nearly as well,

identically or better than the full array adaptive MVDR beamformer.

This implies that the performance may be the same using a reduced

adaptive dimension as when using the full MVDR beamformer. This

statement must be clarified to include the condition that the reduced

adaptive dimension provide enough degrees of freedom to deal with

all the directional interferences present.

Figures 4.1 and 4.2 show how the adaptive beamformers

provide substantial improvement over the CBF when the interference

to noise ratio is high (r > 10dB). When the interfering signal is buried

in the background noise (r < 0dB) the adaptive beamformers provide

no improvement over a CBF, however there is also no degradation.
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This implies that for low level or nonexistant interferences the

adaptive beamformers perform the same as conventional ones.

4.2 Beampatterns

A common misconception about the beampatterns of high

resolution beamformers concerns their mainlobe width. CBF

beampatterns are often compared by their mainlobe width. An

adaptive beamformer that provides greater resolution does not

necessarily have a narrower mainlobe than its CBF counterpart. The

effect of the adaptive beamforming is in the placement of the nulls

that occur between each of the lobes in the beampattern. The MVDR

beamformer places nulls such that the energy due to all the

interferences is optimally cancelled. In order to illustrate this the

example of Figure 4.1 is explored. The interference is at the -3dB

point of a conventional beam, the signal to interference ratio is -3dB,

and the interference to noise ratio is 15dB. The beamformers are

pointed. at the source which is placed at the broadside angle of zero

degrees. The interference is at an angle of 1.58 degrees.

The even figures between 4.4 and 4.14 show the beampatterns

for all arrival angles for six different beamformer configurations.

The odd figures between 4.5 and 4.15 are an expanded plot of the

area where the source and interference are located. The beamformer

configurations are described in Table 4.2.
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The beampatterns are formed assuming that perfect knowledge

of the CSDM is available. This is the case of infinite time averaging or

expected performance for a stationary scenario.

As seen in Figures 4.4 & 4.5 the conventional beamformer only

attenuates the interfering signal by 3dB. All of the adaptive

beamformers steer a null into the vicinity of the interference as

shown by Figures 4.6 through 4.15. The gain the beampattern

applies to the source angle of zero degrees is always unity. This is

because of the distortionless response constraints imposed by all of

the adaptive algorithms.

Table 4.2 Beamformer configurations for Figures 4.4-4.15.
Figures mfr g Decp

4.4 & 4.5 C1F Uniform shading

4.6 & 4.7 Full array MVDR

4.8 &4.9 Subarray # Sensors per subarray = 8

# Subarrays = 7

Subarray shading = uniform

4.10 & 4.11 Beam space # Interpolation beams = 5

4.12 & 4.13 EMVDR Enhancement = 1

# Eigenvectors = 1

4.14 & 4.15 EMVDR Enhancement = 1
# Eigenvectors = 2

The beampattern generated by the subarray preprocessing

beamformer shows how the subarray beampattern is imposed on the

true spectra of the energy impinging on the array. The resulting

spectrum is then undersampled causing the aliasing as seen in Figure

4.8. The first groups of three lobes to either side of the main lobes
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(-15 to -30 and 15 to 30 degrees) are the most adjacent repeated

spectra that are aliased down into the original spectrum. Note that

the beam space preprocessor produced a beampattern, Figures 4.10

& 4.11, almost identical to that of the full array MVDR beamformer.

The EMVDR beamformer in Figure 4.13 shows the null slightly

closer to the source than the other adaptive beamformers. This is

expected because the single eigenvector used in the enhanced

estimate of the CSDM that forms the beamforming vector contains

information about both the source and the interference. If the signal

power were much smaller than the interference (it is only 3dB

smaller in this example) it would be expected that the information

about the source contained in the dominant eigenvector would be

small compared to the information about the interference. Figures

4.14 and 4.15 show the beampattern generated by using two

eigenvectors. Between the two eigenvectors all of the information

about the interference is found and it is seen that the beampattern is

identical to that of the full array MVDR beamformer.

4.3 Beam Responses

This section contains a comparison of the responses of each

beamformer to a given scenario. Various scenarios are presented in

order to illustrate some of the properties of the CBF, the full array

MVDR beamformer, the subarray and beam space matrix

preprocessor beamformers and the enhanced MVDR beamformer.
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Figure 4.4 CBF beampattern, uniform shading, all arrival angles.
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Figure 4.5 CBF beampattern, uniform shading, selected arrival
angles.
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Figure 4.6 MVDR beampattern, all arrival angles.
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Figure 4.7 MVDR beampattern, selected arrival angles.
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Figure 4.8 Subarray beampattern, all arrival angles.
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Figure 4.9 Subarray beampattern, selected arrival angles.
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Figure 4.10 Beam space beampattern, all arrival angles.
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Figure 4.11 Beam space beampattern, selected arrival angles.
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Figure 4.12 EMVDR beampattern, one cigenvector, all arrival
angles.
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Figure 4.13 EMVDR beampattern, one eigenvector, selected arrival
angles.
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Figure 4.14 EMVDR beampattern, two eigenvectors, all arrival
angles.
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Figure 4.15 EMVDR beampattern, two eigenvectors, selected
arrival angles.



76

The beamformers are driven by random data vectors that are

generated according to the model discussed in Section 3.1. A plane

wave source impinging on the line array has a complex random

amplitude scaling the frequency steering vector pointing to the

direction of the source. Uncorrelated complex background noise is

added to the frequency data vector. Thus the beamformer input is a

frequency data vector consisting of the sum of the steering vectors of

each plane wave source scaled by a complex random number and a

complex random noise vector. A sixteen sensor array with one-half

wavelength spacing is beamformed at the design frequency of the

array to look in 5*N = 80 beams equally spaced in wavenumber or

sin(arrival angle) space.

The graphical output is in the form of an arrival angle versus

time waterfall of beam responses. One trace in the time waterfall

corresponds to the beam response of the beamformer steered to each

of the 80 look directions for a particular time. The time increases

upward in the waterfall where the first (bottom) trace corresponds

to the beam response computed from the fifth update of the

exponentially averaged CSDM or the eigen-structure. The last (top)

trace is the beam response after fifty more updates to the CSDM or

eigen-structure. This display structure is chosen to illustrate how

the beamformers perform against random data. Underneath the

waterfall plot each beam response plot is overlaid providing a form

of an averaged beam response.
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Each beam response trace is compressed to provide greater

visual display capability. The compression formula is,

logo(1 + mx/a)

y = k logl0(l+m) 4-9

where y is the value plotted, x is the beam output power, m = 8, a = 1

and k = 10. The compression allows smaller signals to come through

in a linear fashion (seen by approximating the compression function

by a first order Taylor series). Larger signals are compressed by the

log function. The end result is that low level signals may be seen in

the presence of higher level ones.

The deflection or detection index, as described by Urick in [161,

is computed for each plane wave source in the beam responses.

Deflection is defined as,

d = (ms-mn) 2  4-1002

where ms and mn are respectively the mean values of a signal and

noise beam output where the averaging is over time and a 2 is the

variance of the noise beam output. The signal beam is the beam with

an MRA nearest to the direction of arrival of the source of concern

and the noise beam is placed such that little corruption occurs due to

plane waves entering the sidelobes of the beampattern.
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Table 4.3 Beam response case scenario descriptions.

Ftare Source One Source Two Noise Noise
Number Strength Angle Strength Angle Power Beam

IdB) (degrees) (dB) (degrees) (dB) (degrees)
4.16 0 0 - - -3.0 -85.0
4.17 0 0 -10.0 15.0 -3.0 -85.0
4.18 0 0 -10.0 45.0 -3.0 -85.0
4.19 1 0 0- -3.0 15.0 1 -3.0 1 -85.0

4.20 0 -45.0 0 0-50.0 -3.0 -85.0

Five different scenarios are used to compare the beamformers.

The specifics about each case are described in Table 4.3.

Figures 4.16 through 4.20 show the graphical output of the

beam responses. The CBF beam response is always shown as the

baseline for performance as seen in the (a) position in each figure.

The shading of the CBF beamformer is Chebyshev with 30 dB

sidelobes. The full array MVDR beamformer is in the (b) position,

the beam space beamformer with five interpolation beams is in the

(c) position and the subarray beamformer with five subarrays of

eight sensors each and 0.5 dB acceptable scalloping loss is in the (d)

position. The subarray beams have Chebyshev shading with 30dB

sidelobes. The (e) and (f) positions have the EMVDR beamformer

beam responses. The (e) position is used when one dominant mode

or eigenvector is used in the beamformer and the (f) position for the

case of two dominant modes. The enhancement is always kept at

unity to keep the deflection parameter equivalent to the other

beamformers.
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Table 4.4 contains the deflection parameters for the beam

responses shown in Figu es 4.16 through 4.20. The scenarioq with

two plane wave sources have deflections calculated for both sources.

The source number shown in the first column of Table 4.4

corresponds to the source number shown in Table 4.3. The EMVDR

beamformers are with one and two eigenvectors.

Table 4.4 Plane wave source deflections (dB)
for beamformer outputs.

Fiture/Source CBF MVDR BEAM SUB EMVDR-l EMVDR-2
4.16 29.20 30.69 25.79 30.54 32.17 -

4.17 / 1 27.82 29.80 27.21 28.95 30.39 31.31
4.17 / 2 14.87 11.50 8.14 11.00 10.64 11.67
4.18 / 1 27.61 29.52 26.41 28.83 30.26 30.16
4.18 / 2 9.39 11.81 7.46 10.85 11.07 11.97
4.19 I 1 28.29 30.05 27.17 28.90 32.00 32.20
4.19 / 2 25.39 25.24 22.14 24.48 24.93 26.49

4.20 18.97 27.93 25.48 27.00 28.64 25.42

Fifty time samples are used to estimate the means and

variances of the noise and signal beams. The time samples used are

the ones shown in the figures. The first time sample shown is

generated from the fifth update of the CSDM or eigenvector

estimator. This is to remove the deflection computation from most of

the effects of the initialization of the CSDM and eigenvectors.

Several important points may be drawn from the examples

shown in Figures 4.16 through 4.20 and are encapsulated in the

following summary:
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Almost all of the adaptive beamformers resolved the plane wave

sources to a finer bearing than the conventional beamformer. The

exception is when an eigenvector was not attributed to a plane wave

source and conventional beamforming was performed in the EMVDR

beamformers. In this case the resolution is equivalent to that of a

uniformly shaded conventional beamformer.

A low level source is more clearly seen in the presence of a high

level interference for all of the adaptive beamformers (see Figure

4.17). The deflection of the low level source in Figure 4.17 is

greatest for the case with two eigenvectors. This is expected because

of the high resolution obtained by the EMVDR beamformer for

signals that have eigenvectors assigned to them. The next largest

deflection is the CBF. This is not expected and the larger deflection is

attributed to energy entering the mainlobe or sidelobes of the

conventional beamformer, steered at the low level source, from the

interference at zero degrees. This will cause the mean of the signal

beam output to increase and correspondingly an increase in the

deflection.

A very important aspect of the EMVDR beamformer is apparent in

Figures 4.19(e) and 4.20(e) where the high level signals that have

eigenvector assignment are very finely resolved. All other angles

have conventional beamforming characteristics with the added

removal of the interfering signal.
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Figure 4.20 shows a scenario with a moving source. The source

changes bearing from zero degrees to fifty degrees in fifty time

samples, a rate of one degree per time sample. The CBF, MVDR,

subarray and beam space beamformers track the source movement

well as seen in Figure 4.20(a)-(d). The EMVDR beamformer, in Figure

4.20(e), with one eigenvector (assigned to the stationary source)

allows conventional beamforming of the moving source and adequate

tracking. When an eigenvector is assigned to the moving source, as

seen in Figure 4.20(f), the eigenvector estimation algorithm would

not track the changing eigenvector. This may be due to an incorrect

averaging constant that controls the amount of new data that is used

by the eigenvector estimator. A detailed analysis of the eigenvector

estimation algorithm is required before any firm conclusions may be

drawn. Note that this questionable result does not detract from the

EMVDR beamforming algorithm for other methods of obtaining the

eigen-structure of the CSDM are available.

0 In [4] the beam space and subarray matrix preprocessors showed

a scalloping that occurred on the infinite time averaged, or perfectly

known CSDM, beam response. The scalloping is due to the subarray

conventional beam formation and the attenuation incurred on any

signals not arriving on the MRA of the subarray beam. In the beam

space algorithm the full array conventional beams in the

preprocessing are what causes the scalloping. Note that the

scalloping is not apparent in the beam responses to random data.
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(a) CBF (b) Full array MVDR (c) Beam space

(d) Subarray (e) EMVDR, D=1

Figure 4.16 Beam response - Single source
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(a)a--us CBab ularyMR ()Baspc

(d) Subarray (e) EMVDR, D=l (f) EMVDR, D=2

Figure 4.17 Beam response - Single source,
mainlobe interference, SIR = -10dB
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(d) Subarray (e) EMVDR, D=l (f) EMVDR, D=2

Figure 4.18 Beam response - Single source,
sidelobe interference, SIR = - 10dB
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(d) Subarray (e) EMVDR, D=1 (f) EMVDR, D=2

Figure 4.19 Beam response - -Single source,
mainlobe interference, SIR = -3dB
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(a) CBF (b) Full array MVDR (c) Beam space

IQ00 *

(d) Subarray (e) EMVDR, D=1 (f) EMVDR, D=2

Figure 4.20 Beam response - One stationary source,
one moving source



87

4.4 Numerical Intensity

The full array MVDR beamformer requires on the order of N2

numerical operations per update per beam as shown by Owsley in [2]

and [4]. The inversion of the estimated CSDM is the driving factor

behind the numerical intensity. The reduced adaptive dimension

beamformers all alleviate this problem to varying extents. As seen

in [4] and Table 4.5 the numerical complexity is a function of the

following parameters:

MVDR, CBF, and all others:
N - Number of sensors in the array

Lb - The total number of beams to form, nominally - 5N

Beam space:
M - The number of int.rpolation beams

Subarrays:
M - The number of subarrays
Ns - The number of sensors per subarray

Ls - The number of subarray beams to form

EMVDR:
D - The number of dominant modes or eigenvectors used

Table 4.5 Beamformer complexity expressed in the number of

arithmetic operations per update.

Beamformer Numerical Complexity
CBF NLb

MVDR N2 + N2 Lb + NLb
Beam space N2 + 2M2N + M2Lb + MLb

Subarray NsMLs + 2M2Ls + M2Lb + MLb
EMVDR DN + DNLb + NLb
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The numerical gain achieved by the use of a beamformer other

than the full array MVDR beamformer may be calculated by taking

the ratio of the number of operations per update for the full array

MVDR beamformer to the required number of operations per update

for the topic beamformer. For each of the beamformers of the beam

response comparison of Section 4.3 the numerical gain is computed

using the equations found in Table 4.5 and displayed in Table 4.6.

From this comparison it is seen that the EMVDR beamformer

with one eigenvector achieves the most numerical gain. The beam

space and then the subarray beamformers follow slightly behind it.

The adaptive dimension of the subarray beamformer, the number of

subarrays, was taken to be equal to that of the beam space

algorithm, the number of interpolation beams. Fewer subarrays or

fewer interpolation beams will provide greater numerical gain and

varying performance. The price of optimal and sub-optimal

beamforming is seen by the large numerical savings achieved by

using conventional beamforming.

Table 4.6 Numerical gain for

beamformers of Section 4.3.

Beamformer Gain
CBF 17.2

MVDR 1.0
Beam space 6.4

Subarray 5.7
EMVDR, D=1 8.5
EMVDR, D=2 5.7



CHAPTER 5 - CONCLUSION

5.1 Summary

This thesis provides a general introduction to the concept of

conventional and adaptive beamforming in Chapter 2 with a proposal

for reducing the dimension of the adaptive process in adaptive

beamforming.

The theoretical development of the matrix preprocessed

minimum variance distortionless response (MVDR) beamformer is

presented in Chapter 3 as well as the beam space and subarray

matrix preprocessing schemes. The enhanced minimum variance

beamformer is developed in Section 3.4.

A comparison of the three topic reduced dimension adaptive

beamformers with the full element space MVDR algorithm and a

conventional beamformer is shown in Chapter 4. The comparison is

accomplished using such metrics as the array gain improvement

(AGI), the beamformer beampatterns, beam responses and numerical

complexities.

The AGI and beampattern comparisons have both shown for

the single source, single interference in uncorrelated background

noise scenario that the reduced adaptive dimension beamformers

provide nearly the same average performance as the full array

MVDR beamformer. The beam response comparisons have confirmed

89
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this in terms of the deflection parameter and by visual inspection of

the graphical output of the beamformers shown in Section 4.3.

The enhanced minimum variance beamformer (EMVDR)

showed equivalent performance (when the correct number of

eigenvectors is used) in the AGI and beampattern comparisons. In

the beam response comparisons the EMVDR beamformer consistantly

outperformed the MVDR beamformer in terms of deflection and

visual inspection of the graphical output. There are still two areas of

concern associated with the EMVDR beamformer: the required

estimation of the number of plane wave interferences and further

exploration of the eigen-structure estimator used and other potential

estimators.

The subarray and beam space reduced adaptive dimension

beamformers performed nearly as well as but not better than the

MVDR beamformer in terms of deflection and visual inspection of the

graphical output. The beam space beamformer has an advantage

over the other adaptive beamformers in that access to the sensor

level data is not required. The subarray beamformer may prove

more tolerant to array sensor position perturbations than the other

adaptive beamformers.
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5.2 Future Work

Several areas of interesting work deserving greater depth have

been highlighted throughout this thesis. The following paragraphs

are devoted to listing these areas.

The EMVDR beamformer proved to be the most interesting and

also the most unfinished of the beamformers evaluated. One

primary concern of the beamformer is the number of dominant

modes required to achieve the best performance. The AGI

comparison in Section 4.1 shows that only the strong plane wave

sources need to be attributed eigenvectors. If fewer eigenvectors are

used the performance degrades some but as seen in the beam

response comparisons of Section 4.3, particularly Figure 4.19(e), it

may be possible to start out with fewer eigenvectors than required

and increase the number after visual evaluation of the beam

response. The noted figure clearly shows a strong plane wave source

being beamformed conventionally in the beam response plot. Once

this is attributed an eigenvector, as in Figure 4.19(f), the beam

response does not exhibit any obviously strong plane wave sources

with conventional beamforming. It may be possible to automate this

process removing the human interface. The estimate of the number

of dominant plane wave sources must be constantly updated for the

scenario may be changing.

The second concern of the EMVDR beamformer is the method of

estimating the eigen-structure of the CSDM. Ideally the eigenvectors
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and eigenvalues of an exponentially averaged CSDM are desired.

This will allow equivalent comparison of the EMVDR beamformer

with other beamformers utilizing the exponential CSDM averager.

The one used in the simulations of this thesis, as described by Yang

and Kaveh in [7] and in Appendix B, is numerically very quick and

may provide the desired quality but requires further exploration.

As mentioned in the conclusions section, the subarray

beamformer may be more tolerant to array sensor position

perturbations than the other beamformers. When the exact position

of the sensors in the array is not known and the position may be

estimated for sections of the array the subarray technique may be

ideally suited to the beamforming task for the perturbed array. The

subarray size may be matched to the section whose location is known

and then beamformed conventionally. Those beam outputs are then

combined adaptively with the extra information about the section

postitions.

A further application of the subarray preprocessing may be the

use of the EMVDR beamformer at the subarray beam output stage

instead of the MVDR process. This would further reduce the

numerical intensity but would require a good algorithm for

estimating the number of dominant plane waves in each subarray

beam output.
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The CSDM being estimated in the matrix preprocessed reduced

dimension adaptive beamformers is of a smaller dimension than that

of the full array MVDR beamformer. This may provide a reduced

noise variance on a beam output due to the uncertainty of the CSDM

estimation. This has not been shown in this thesis and is still a

conjecture, however it is expected that the estimation of the smaller

dimension CSDM should require a shorter time constant in the

exponential estimator than the estimation of the full CSDM. Faster

adaptation or lower variance beam outputs may be achievable

because of the shorter time constant. Further work in this area

should explore the estimation of the reduced dimension covariance.

As a group beamformers are subjected to queries about their

performance against several debilitating scenarios such as angularly

extended noise, correlated plane wave sources and scenarios that

change over time. The reduced dimension beamformers may contain

a facet that aids in the battle against these types of problems. Only

further study will provide answers to these queries.



APPENDIX A - Cross Spectral Density Matrix Update and
Inversion

UPDATE EQUATION
The covariance or cross spectral density (CSDM) matrix is not

known a priori and must be estimated. It is defined as the expected
value of the outer product of the frequency data vector with its
complex conjugate transpose (tranjugate). In order to reduce noise
associated with the estimation of the CSDM some sort of averaging is
required. Block averaging estimates the CSDM as the sample mean of
the outer products of L frequency data vectors,

A L
R L j x(i,f)xH(i,f) . Al

This method requires L frequency data vectors to generate one CSDM
estimate.

An alternative method is to perform exponential averaging of
the stochastic rank one approximation to the CSDM yielding,

A A
R(k) = (1-a)x(k,f)xH(k,f) + ctR(k-1) , A2

where a is the exponential averaging constant and varies between
zero and one. This algorithm requires an initialization value for the
CSDM. A block average, as shown above, the identity matrix, or an
intelligent estimate based on the dominant plane wave sources and
the structure of the CSDM may be used.

The minimum variance distortionless response (MVDR)
beamforming algorithm requires the inverse of the CSDM multiplied
by a known vector. A matrix inversion requires on the order of N3

numerical operations. For large values of N this is not acceptable.
Owsley covers in [2] and [5] the use of the Cholesky square root
factorization of the CSDM in the update equation, A2, above. In [2]
Owsley shows that the triangular Cholesky square root factorization
yields an order of N2 numerical operation algorithm for determining
the MVDR beamforming vector. The Cholesky square root
factorization of the CSDM is defined as,

95
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A
R(k) = C(k)CH(k), A3

where C(k) is the Cholesky square root factor of the estimated CSDM
at time k. Brogan shows in [6] that the Cholesky square root
factorization of a symmetric positive definite matrix exists and is a
lower triangular matrix. Applying the Cholesky square root
definition of the CSDM to the equation A2 above yields,

A
R(k) = (1-a)x(k,f)xH(k,f) + axC(k-1)CH(k-1). A4

Now by rewriting the above equation as the product of an N-by-N+l
matrix and its tranjugate,

A ]H
R(k) = [ iF-a x(k f) -,F1C(k-)[ .5lr-a x(k,f) akl

= U(k)UH(k). A5

Note that the N+1-by-N matrix UH(k) is in the form of a row vector
appended to the top of an upper triangular matrix.

= -1l_--C XH(k,f)] A

UH(k) =. k A6

_ 4-0CH(k- 1)]

If the diagonal of the upper triangular matrix were "zeroed out" then
the bottom row would be a zero row vector and may be dropped
yielding an N-by-N upper triangular matrix.

The diagonal of the matrix CH(k-I) in A6 may be "zeroed out"
by the use of a set of Givens rotations (see Golub & Van Loan [13]).
The Givens rotation is an orthogonal matrix premultiplier that has
the ability to zero out an array element. The Givens
premultiplication matrix is in the form of an N+1-by-N+l identity
matrix with a two-by-two matrix slid along the diagonal. The two-
by-two matrix is chosen to annihilate the diagonal elements of the
C H(k- 1) matrix. The orthogonality of the Givens rotation matrix
allows the preservation of the U(k)UH(k) product in equation A5.
The N Givens rotations produce the following,
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A
R(k) = U(k)PlP 2...PNPNH...P 2HP1HUH(k) A7

= U(k)PPHUH(k),

where,

P = P1P2"".PN
piPiH = IN+1 •

It is desired to form the update equation of the CSDM into a
Cholesky square root factorization form. Once all the diagonal
elements of C H(k-1) are annihilated the updated Cholesky square
root factor is simply the first N rows of the resulting Givens rotated
product,

CH(k) = First N rows of PHUH(k).

In order to calculate pHUH(k), the N Givens rotations must be
performed. Because of the form of the Givens premultiplier matrix,
piH, only two rows of UH(k) are altered at a time. Thus the updated

Cholesky square root is formed by recomputing the ith and i+lst

rows of UH(k) for i=1 to N. Because of the sparseness of the upper
triangular matrix in U H(k) this procedure requires very few
numerical operations.

BEAMFORMING VECTOR GENERATION

As seen in Section 3.2 the MVDR beamformer requires that the
inverse of the CSDM post multiplied by a known vector be computed
in order to find the beamforming vector. This is seen by equation
3-25 to be,

NRp'IAHd(O) 3-25
W(0) -dH(0)ARp-1AHd(O).

Note that the CSDM inverse post multiplied by the vector
formed by the projection of the steering vector onto the presteering
matrix appears in both the numerator and the denominator. Thus in
order to form the beamforming vector the CSDM inverse post
multiplied by AHd(O) need only be formed and placed into equation
3-25.
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Forming the matrix-vector product as,

v = R-lu

where u is known and v is the desired output. Then multiplying
both sides by the CSDM,

Rv =u.

Now replacing the CSDM by its Cholesky square root factorization as
seen in equation A3,

CCHV = U.

Let

r = CHv A8

where substitution yields,

Cr=u. A9

This equation (A9) may be solved for the unknown vector, r, by a
forward substitution. Once r is known, a backward substitution may
be used to find the desired vector, v, through equation A8. The
forward and backward substitution algorithms are shown by Golub
and Van Loan in [13]. They are used for the solution of the Ax = b
equation for x for lower and upper triangular matrices respectively.

The beamforming vector may now be computed with an overall
order of N2 numerical operations to accomplish the CSDM exponential
update and the matrix inversion required by the MVDR beamformer.



APPENDIX B - Eigen-structure Estimation

INTRODUCTION
The enhanced minimum variance (EMVDR) beamformer

requires the estimation of the D dominant eigenvectors and
eigenvalues of the cross spectral density matrix (CSDM). This may be
accomplished by a brute force general eigenvector decomposition
routine performed on the exponentially averaged CSDM or by
exploiting the structure of the CSDM and estimating only the
eigenvectors that are desired. One of the algorithms that exploits the
strucutre of the CSDM, as described in Section 3.1, is shown by Yang
and Kaveh in [7].

The algorithm described in [7] also utilizes the fact that the
eigenvectors of a matrix and of a polynomial function of the matrix
are the same. The eigenvalues of the polynomial function of the
matrix are the original eigenvalues operated on by the polynomial
function. The particular polynomial function,

h(R) = R-1,

causes the eigenvectors corresponding to the D largest eigenvalues of
R to be the D smallest eigenvalues of h(R). Yang and Kaveh have
shown that this particular estimation procedure performs better than
the estimation of the D dominant eigenvectors of the non-inverted
CSDN.

INITIALIZATION
Yang and Kaveh suggest initializing the estimate of the

eigenvectors with the first D columns of an averaged CSDM where
there must be at least D averages to provide enough linearly
independent vectors. The first D columns are orthonormalized using
the Gramm-Schmidt technique. It was found that initialization of the
eigenvectors with an N-by-D identity matrix required many
iterations of the algorithm for convergance near the true
eigenvectors. Alternatively, as suggested by James Nuttall of NUSC,
the eigenvectors may be initialized to the array steering vectors
pointing to the direction of the D dominant sources. This method
proved to work very well.
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ALGORITMm
The algorithm required to perform the update is now

presented in vector notation.

Iteration k:

Input: a - Averaging constant
x - Frequency data vector.
wi(k-1) - Eigenvector estimates at time k-1, i=1,, D

Step 1: X1 = WIH(k-1)x

W = 2a-~wlk-1 -r2(1 -a) x X
WP XH2-1wXk1

wl(k) = _O__

4-WPHWP

Step 2: Doj = 2to D,
x =x - Xk..iwj..(k)

Xi W 3H(k-1)x

Wp = (2a-1)wj(k-1) +21-ax j

wj(k) - WD___

End do

Output: wi(k) - Eigenvector estimates at time k, i=1,, D
Xi - Eigenvalue estimates, i=1, ... , D



APPENDIX C - Subarray Sizing Algorithm

INTRODUCTION
The size and spacing of a subarray is constrained to allow only

a specified amount of aliasing and to utilize the full aperture of the
array. For a given type of subarray shading each possible subarray
size must be evaluated for validity in the above two concerns. The
aliasing and full aperture usage constraints are elaborated on in
Section 3.3.1.

This appendix is intended to introduce the algorithm used to
compute the valid array size and spacing combinations when the
array shading and the number of full array sensors is given. The
scalloping loss limits, as described in Section 3.3.1.2, are found as
well for the valid subarray size and spacing combinations.

DISCUSSION
The algorithm requires an educated searching routine that

must locate the maximum point of the first sidelobe of the subarray
beampattern generated by a given subarray size and shading. Once
this is done the wavenumber in the mainlobe that has attenuation
equal to that of the first sidelobe maximum is determined. From this
value the subarray spacing is determined and tested to see if it is an
integer. If it is an integer then the number of subarrays required to
span the full array aperture is tested for an integer value
characteristic. If both the integer constraints are satisfied the
subarray size and spacing are a valid combination. The beampattern
is then searched to find the wavenumber at which the scalloping loss
limit is not violated. This will determine the number of subarray
beams required to estimate the full arrival angle space (-90 to +90
degrees).

ALGORITHM
The algorithm is as follows:

Input: N - Number of sensors in full array
wind(I) - Subarray shading function, returns shading

for I elements in column vector
Scal - Scalloping loss limit in dB

/* Loop through all possible subarray sizes (Ns = 3 to N-1)*/
Nc r= 0

101
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Ns=2
Step 1: If (Ns<N-2) Then

Ns=Ns+ 1
1* Get shadings for current subarray size */
s = wind(Ns)
/* Compute beampattern via FFT, convert to dB */
bp = 10logl0(abs(FFT(s,NF.r)) 2 )

/* Step through beampattern searching for scalloping
loss limit, first minimum and first sidelobe
maximum */

/* Initialize for search */
Iscal = 1
BMIN = False
BOLD = bp(1)
I=0
Step 2: 1=I+ 1

1* Check for scalloping loss limit */
If ((bp(I)<Scal) AND (Iscal=l)) Then

Iscal = Ind
End if
/* Check for first minimum "1
If ((bp(1)<BcuR) AND (QMIN = False)) Then

QMIN = True
Endif
/* Check for first sidelobe maximum */
If ((BOLD>BCJR) AND (QMIN = True)) Then

SLL = BOLD
Else

BOLD = BCuR
Goto Step 2

Endif

/* Find the aliasing point in the mainlobe */
/* Initialize *1
1=0
Step 3: 1=1+ I

If (bp(I)>SLL) Then
Goto Step 3

Endif
IALIAS = I
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/* Test for validity: Integer constraints */
Step 4: NA = NFFF / 2 IALIAS

M = 1 + (N - Ns)/NA
If (M = Integer) Then

Goto Step 5
Else

Goto Step 1
End if

/* Compute output parameters */
Step 5: NcNr = NcTr + 1

Ns(NcNT) = Ns
M(NCNr)- M
NA(NCNT) = NA
L(NcNT) = ceil(NFFT/ 2ISCAL)
Goto Step 1

Else
Stop

Endif

Output: Ns - Vector of valid subarray sizes
M - Vector of number of subarrays
NA - Vector of subarray spacings
L - Vector of number of subarray beams
NcTr - Length of above vectors, number of valid

combinations.
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